Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
JMIR Ment Health ; 11: e55552, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38663011

BACKGROUND: Heart rate variability (HRV) biofeedback is often performed with structured education, laboratory-based assessments, and practice sessions. It has been shown to improve psychological and physiological function across populations. However, a means to remotely use and monitor this approach would allow for wider use of this technique. Advancements in wearable and digital technology present an opportunity for the widespread application of this approach. OBJECTIVE: The primary aim of the study was to determine the feasibility of fully remote, self-administered short sessions of HRV-directed biofeedback in a diverse population of health care workers (HCWs). The secondary aim was to determine whether a fully remote, HRV-directed biofeedback intervention significantly alters longitudinal HRV over the intervention period, as monitored by wearable devices. The tertiary aim was to estimate the impact of this intervention on metrics of psychological well-being. METHODS: To determine whether remotely implemented short sessions of HRV biofeedback can improve autonomic metrics and psychological well-being, we enrolled HCWs across 7 hospitals in New York City in the United States. They downloaded our study app, watched brief educational videos about HRV biofeedback, and used a well-studied HRV biofeedback program remotely through their smartphone. HRV biofeedback sessions were used for 5 minutes per day for 5 weeks. HCWs were then followed for 12 weeks after the intervention period. Psychological measures were obtained over the study period, and they wore an Apple Watch for at least 7 weeks to monitor the circadian features of HRV. RESULTS: In total, 127 HCWs were enrolled in the study. Overall, only 21 (16.5%) were at least 50% compliant with the HRV biofeedback intervention, representing a small portion of the total sample. This demonstrates that this study design does not feasibly result in adequate rates of compliance with the intervention. Numerical improvement in psychological metrics was observed over the 17-week study period, although it did not reach statistical significance (all P>.05). Using a mixed effect cosinor model, the mean midline-estimating statistic of rhythm (MESOR) of the circadian pattern of the SD of the interbeat interval of normal sinus beats (SDNN), an HRV metric, was observed to increase over the first 4 weeks of the biofeedback intervention in HCWs who were at least 50% compliant. CONCLUSIONS: In conclusion, we found that using brief remote HRV biofeedback sessions and monitoring its physiological effect using wearable devices, in the manner that the study was conducted, was not feasible. This is considering the low compliance rates with the study intervention. We found that remote short sessions of HRV biofeedback demonstrate potential promise in improving autonomic nervous function and warrant further study. Wearable devices can monitor the physiological effects of psychological interventions.


Biofeedback, Psychology , Heart Rate , Wearable Electronic Devices , Adult , Female , Humans , Male , Middle Aged , Biofeedback, Psychology/methods , Biofeedback, Psychology/instrumentation , Health Personnel , Heart Rate/physiology , New York City , Prospective Studies , Telemedicine/methods , Telemedicine/instrumentation
2.
JAMIA Open ; 6(2): ooad029, 2023 Jul.
Article En | MEDLINE | ID: mdl-37143859

Objective: To assess whether an individual's degree of psychological resilience can be determined from physiological metrics passively collected from a wearable device. Materials and Methods: Data were analyzed in this secondary analysis of the Warrior Watch Study dataset, a prospective cohort of healthcare workers enrolled across 7 hospitals in New York City. Subjects wore an Apple Watch for the duration of their participation. Surveys were collected measuring resilience, optimism, and emotional support at baseline. Results: We evaluated data from 329 subjects (mean age 37.4 years, 37.1% male). Across all testing sets, gradient-boosting machines (GBM) and extreme gradient-boosting models performed best for high- versus low-resilience prediction, stratified on a median Connor-Davidson Resilience Scale-2 score of 6 (interquartile range = 5-7), with an AUC of 0.60. When predicting resilience as a continuous variable, multivariate linear models had a correlation of 0.24 (P = .029) and RMSE of 1.37 in the testing data. A positive psychological construct, comprised of resilience, optimism, and emotional support was also evaluated. The oblique random forest method performed best in estimating high- versus low-composite scores stratified on a median of 32.5, with an AUC of 0.65, a sensitivity of 0.60, and a specificity of 0.70. Discussion: In a post hoc analysis, machine learning models applied to physiological metrics collected from wearable devices had some predictive ability in identifying resilience states and a positive psychological construct. Conclusions: These findings support the further assessment of psychological characteristics from passively collected wearable data in dedicated studies.

3.
JAMIA Open ; 5(2): ooac041, 2022 Jul.
Article En | MEDLINE | ID: mdl-35677186

Objective: To determine whether a machine learning model can detect SARS-CoV-2 infection from physiological metrics collected from wearable devices. Materials and Methods: Health care workers from 7 hospitals were enrolled and prospectively followed in a multicenter observational study. Subjects downloaded a custom smart phone app and wore Apple Watches for the duration of the study period. Daily surveys related to symptoms and the diagnosis of Coronavirus Disease 2019 were answered in the app. Results: We enrolled 407 participants with 49 (12%) having a positive nasal SARS-CoV-2 polymerase chain reaction test during follow-up. We examined 5 machine-learning approaches and found that gradient-boosting machines (GBM) had the most favorable validation performance. Across all testing sets, our GBM model predicted SARS-CoV-2 infection with an average area under the receiver operating characteristic (auROC) = 86.4% (confidence interval [CI] 84-89%). The model was calibrated to value sensitivity over specificity, achieving an average sensitivity of 82% (CI ±âˆ¼4%) and specificity of 77% (CI ±âˆ¼1%). The most important predictors included parameters describing the circadian heart rate variability mean (MESOR) and peak-timing (acrophase), and age. Discussion: We show that a tree-based ML algorithm applied to physiological metrics passively collected from a wearable device can identify and predict SARS-CoV-2 infection. Conclusion: Applying machine learning models to the passively collected physiological metrics from wearable devices may improve SARS-CoV-2 screening methods and infection tracking.

4.
J Med Internet Res ; 23(9): e31295, 2021 09 13.
Article En | MEDLINE | ID: mdl-34379602

BACKGROUND: The COVID-19 pandemic has resulted in a high degree of psychological distress among health care workers (HCWs). There is a need to characterize which HCWs are at an increased risk of developing psychological effects from the pandemic. Given the differences in the response of individuals to stress, an analysis of both the perceived and physiological consequences of stressors can provide a comprehensive evaluation of its impact. OBJECTIVE: This study aimed to determine characteristics associated with longitudinal perceived stress in HCWs and to assess whether changes in heart rate variability (HRV), a marker of autonomic nervous system function, are associated with features protective against longitudinal stress. METHODS: HCWs across 7 hospitals in New York City, NY, were prospectively followed in an ongoing observational digital study using the custom Warrior Watch Study app. Participants wore an Apple Watch for the duration of the study to measure HRV throughout the follow-up period. Surveys measuring perceived stress, resilience, emotional support, quality of life, and optimism were collected at baseline and longitudinally. RESULTS: A total of 361 participants (mean age 36.8, SD 10.1 years; female: n=246, 69.3%) were enrolled. Multivariate analysis found New York City's COVID-19 case count to be associated with increased longitudinal stress (P=.008). Baseline emotional support, quality of life, and resilience were associated with decreased longitudinal stress (P<.001). A significant reduction in stress during the 4-week period after COVID-19 diagnosis was observed in the highest tertial of emotional support (P=.03) and resilience (P=.006). Participants in the highest tertial of baseline emotional support and resilience had a significantly different circadian pattern of longitudinally collected HRV compared to subjects in the low or medium tertial. CONCLUSIONS: High resilience, emotional support, and quality of life place HCWs at reduced risk of longitudinal perceived stress and have a distinct physiological stress profile. Our findings support the use of these characteristics to identify HCWs at risk of the psychological and physiological stress effects of the pandemic.


COVID-19 , Pandemics , Adult , COVID-19 Testing , Female , Health Personnel , Humans , New York City , Quality of Life , SARS-CoV-2 , Stress, Physiological , Stress, Psychological/epidemiology
5.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Article En | MEDLINE | ID: mdl-33529156

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/physiopathology , Heart Rate/physiology , Wearable Electronic Devices , Adult , COVID-19/virology , Circadian Rhythm/physiology , Female , Health Personnel , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
...